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Abstract

Some experimental data on turbulent free-shear-layer growth, mixing, and
chemical reactions are reviewed. The dependence of these phenomena on such fluid
and flow parameters as Reynolds number, Schmidt number, and Mach number are
discussed, with the aid of some direct consequences deducible from the large-scale

organization of the flow as well as from some recent models.
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1. Introduction

The mixing of two or more fluids that are entrained into a turbulent region

is an important process from both a scientific and an applications vantage point.
Mixing in turbulent flows can imply a host of processes and phenomena. Species

can be transported by turbulence to produce a more uniform distribution than some

initial mean profile. This process is sometimes also referred to as mixing. without

regard to whether the transported species are mixed on a molecular scale or not.
If the issue of mixing arises in the context of chemical reactions and combustion,

however, we recognize that only fluid mixed on a molecular scale can contribute
to chemical product formation and associated heat release. The discussion in this

paper will be limited to molecular mixing.

Molecular mixing by turbulence is important theoretically in that it provides

an arena in which models of the behavior at the smallest scales of turbulence can
be tested. These smallest scales correspond to a spectral regime that can be treated

in a relatively cavalier fashion, if one need only address the momentum transport
properties of the turbulent region (Brown and Roshko 1974), for example, but must
be described with some deference to the physics at those scales if molecular mixing

is to be accounted for correctly. From an experimental point of view, molecular

mixing and chemical reactions in high-Reynolds-number flows provide us with an

important probe of diffusion length and time scales that are so small as to otherwise
remain beyond the reach of conceivable direct measurement diagnostics. Matters
are no better computationally, with the requisite spatial/temporal resolution long

recognized to be out of reach (e.g., Von Neumann 1949), a situation that must

still be accepted as the case for high Reynolds number flow for the foreseeable
future (e.g., Leonard 1983, Rogallo and Moin 1984). Finally, from a technological

vantage point, mixing in a turbulent environment may well dictate the performance

of many devices that rely on the details of the turbulent mixing process, such as high

fuel efficiency internal combustion engines, chemical lasers, hypersonic propulsion,

etc. It is also likely to prove to be an important consideration in other contexts,

such the local and global environmental issues involving chemistry in the turbulent

atmospheric environment, the dynamics of stellar atmospheres and interiors, etc.

The discussion here will be limited to mixing in turbulent shear layers, formed

between two uniform free streams of unequal velocity, not necessarily of equal den-

sity, at high Reynolds numbers. In particular, at least for subsonic flow, for values

of the local Reynolds number given by

Re _> 10 4 , (1)
V/
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where b = 6(x) is the (local) transverse extent of the turbulent shear layer region,

U= U1-U2 (2)

is the velocity difference across the shear layer, and v is some appropriate measure of
the kinematic viscosity. In the discussion that follows, issues pertaining to gas-phase
mixing will be addressed, for which the Schmidt number,

Sc = ,D ' (3)

with V the diffusing/mixing species diffusivity, is near unity. Mixing in liquid-phase
flows, for which Sc > 1 (e.g., Scwater 600), will also be discussed. Differences in
turbulent mixing between these two fluid phases are important in that they provide
important clues to the behavior and the dynamics of the flow at the smallest scales.

Although the two-dimensional, shear-layer flow geometry may not be germane
to all the issues alluded to earlier, many of the phenomena that need to be addressed
are generic and two-dimensional, turbulent, free-shear-layer flows provide a useful
arena in which they can be studied. Additionally, however, the flow within the tur-
bulent region formed between the two bounding free streams is capable of sustaining
relatively rapid mixing, and one that can be further enhanced by a variety of flow
manipulation means. This is a consequence of the property of shear-driven turbu-
lence which, at least for subsonic flow conditions, can generate interfacial surface
area between fluids inducted from each of the two streams at very high rates. At the
high Reynolds numbers of interest here, the relatively small (molecular) diffusivity
can result in a total diffusive flux across this very large interface that may come
close to accommodating the rate at which the free stream fluids are inducted into
the turbulent region at the largest scales of the flow. As a consequence, at least
for subsonic, high-Reynolds-number, gas-phase flows, one finds that the expected
fraction 6m /6 of the turbulent region occupied by molecularly mixed fluid can be
significant. It's not called a mixing layer for nought!

It is useful to view the molecular mixing process and any associated chemical
product formation at a particular station x of the flow as resolved into a sequence
of Lagrangian stages in the "life" of entrained fluid elements bearing the chemical
reactants. These fluid elements must:

1. be inducted into the mixing zone of relative transverse extent 5/x, then,

2. mix molecularly to occupy some fraction bm/6 , of b(x) at x, before
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3. reacting to form the chemical product, which represents, in turn, some
fraction 6 p/ 6 m of the mixed fluid.

This suggests expressing the expected chemical product, formed between the virtual
origin (x = 0) of the shear layer and the station at x, as a product of three factors,
i.e.,

bP _ 6 m 6 Pb- =- x b-- . (4)
X X b bm

The first factor, b/x, measures the growth of the mixing-layer region; the second,
bim/b, the mixing within the shear layer, and the third, bp/ 6 mn, the chemical reactions

that can take place within the molecularly mixed fluid in the layer. This partition,

at least in the case of high Reynolds numbers, is justified by the fact that the various
stages represented by these factors occur in a succession of Lagrangian times. This

resolution also provides a useful framework within which turbulent mixing and
chemical reactions in two-dimensional shear layers can be discussed and reviewed
and will be adopted in the discussion that follows.
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2. Shear-layer growth: /x

At the high Reynolds numbers of interest and for Schmidt numbers that, if

not large, are not much smaller than unity, the shear-layer growth rate /x is an

important quantity. It measures the angle of the wedge-shaped turbulent mixing
region that confines the mixed fluid and chemical product. As a consequence, the

width of the turbulent region, b/x, represents an upper bound for the amount of

mixed fluid in the shear layer, corresponding to a scenario in which the entrained
fluids are mixed instantly, on a molecular scale, as soon as they enter the turbulent

region within the transverse extent 6.

As we'll discuss below, the normalized transverse extent b/x of the shear layer

is found to depend on several dimensionless parameters of the flow, i.e.,

U2  P2
r= s - , (5)

Pi

the freestream velocity and density ratios, respectively, the (convective) Mach num-

bers of the two streams, i.e.,

MC- and Mc 2 = UU 2  (6a)
a, a2

where

U2 < Uc < U1 (6b)

is the convection velocity of the large-scale structures in the shear layer, and al, 2 are
the speeds of sound in the high- and low-speed freestream, respectively. In the case

of combusting flow, it also depends on the relative mean density reduction Ap/p in

the interior of the chemically reacting shear layer attributable to heat release. For

equal freestream densities (P1 = P2 = p0), this can be expressed in terms of the

heat release parameter
SPo- P - , (7)

PO Po

where fi is the (reduced) mean density of the flow within the 6/x shear-layer wedge.

Finally, the shear layer growth rate is influenced by the presence of streamwise
pressure gradients. We note, however, that if dp/dx # 0 (accelerating/decelerating

flow), the shear layer will not grow linearly, unless it so happens that the dynamic

pressures in the two free streams are matched, i.e., if p, U 2 = p 2U2 (Rebollo 1973).

As we'll discuss later, experimental informztion, as well as some theoretical under-

standing, of the dependence of b/x on these parameters is available, even though

the picture is as yet far from complete or satisfactory.
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By 6, in this discussion, we will denote the local transverse extent of the sheared
region that contains the molecularly mixed fluid in a boundary-layer sense, i.e., the
distance between the shear laver edges outside which the expected concentration of
molecularly mixed fluid is less than some small fraction, say, 1% of its peak value.
This definition yields a local width that closely matches the measurements of the
"visible" shear layer width /5is, as would be measured in a schlieren or shadowgraph

picture of the layer (e.g., Brown and Roshko 1971, 1974). It is also very close to
the 1% width, bl, in the case of a chemically reacting layer, defined as the distance
between the two points across the layer where the mean product concentration, or
temperature rise owing to heat release, has dropped to 1% of its peak value (see
Mungal and Dimotakis 1984, Koochesfahani and Dimotakis 1986). As a result of
the similarity properties of this flow at high Reynolds numbers (Eq. 1), we can
argue that other transverse scales must simply be proportional to the outer scale
b. By way of example, the vorticity (or maximum slope) thickness b5,, defined in
terms of the mean streamwise velocity profile U(y) as

1 _ 1 [dU(y)] , (8)
6w U[ LdyJ max

is found to be roughly half of 6.

2.1 Dependence on the velocity and density ratio

Abramowich (1963) and Sabin (1965) proposed an expression for the shear-layer
growth rate given by

6 ; C6 -i (9)
x l+r

where Cb is taken as a constant. This is an expression that can be argued for on
similarity grounds,* and is found to be in reasonable accord with experimental data
of incompressible shear layers with equal freestream densities. The dependence on
the freestream density ratio was addressed in the seminal experiments by Brown
and Roshko (1971, 1974), originally undertaken to investigate whether the observed
reduction in growth rate in super-j,;c shear layers could be attributed to den-
sity ratio effects. Using different gases for each freestream and subsonic freestream

In a frame moving with the convection velocity Uc, we must have 6/1 cc AU, where AU =
U1 - U2 ; the only relevant velocity in the problem. Equation 9 then follows if Uc = (U +U 2 )/2,
which is found to be the case for Pl = P2, if we transform back to the lab coordinates, i.e.,
z = t/Uc, and normalize all velocities with U1 .
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velocities, they found that whereas the growth rate depended on the freestream

density ratio, compressibility effects could not be identified with density ratio ef-

fects. In subsequent experiments, Konrad (1976) provided further documentation
of the dependence on the density ratio and also noted that a shear layer entrained
asymmetrically from each of the freestreams, as will be discussed in Sec. 3.2.

Brown (1974) proposed an account of these phenomena based on similarity

arguments that recognized the significance of a Galilean frame translating at the
convection velocity Uc of the large structures. Growth and entrainment are to be
understood as taking place in this frame, whose convection velocity is a function of
both the density and velocity ratio. Brown's theory, which applied to a temporally
growing shear layer, was in reasonable accord with the observed dependence of the
growth rate on the freestream density ratio, but - as appropriate for a temporal

model - predicted no asymmetry in the entrainment ratio for matched freestream
densities, contrary to Konrad's observations.

In a subsequent proposal (Dimotakis 1984), the difference between temporal vs.

spatial growth of a shear layer was noted and exploited to explain the entrainment

ratio asymmetry. These basically geometric and similarity considerations led to an
expression for the growth rate of a spatially growing shear layer given by

C6 (1 -r)(1-s+/ 2 )( (1-_s/ 2 )/(1+s1/2) } (10)
x 2(1 + sl/ 2 r) I I+2.9(1+r)/(1-r) j

where the coefficient C6 is taken as independent of the velocity ratio r and the
density ratio s. The factor multiplying the braces describes the growth rate of a

temporally growing shear layer and is the same as the Brown proposal (1974) for
shear layer growth. The factor in the braces arises from the fact that the growth is
in fact spatial.

The observed (and predicted) dependence of the growth rate on the density

ratio is not weak. It is plotted for density ratios in the range 0.1 < s < 8 in
Fig. 1, computed for a fixed velocity ratio of r = 0.4 and the value of C6 = 0.37,

along with the experimental values of Brown and Roshko (1974) for s = 1/7, 7,

and the measurement of Mungal and Dimotakis (1984) for s = 1. Also plotted
for comparison is the Brown (1974) prediction for the temporally growing shear
layer. As can be seen, the difference between the two predicted growth rates is not

large. It vanishes for equal freestream densities (s = 1), where the quantity in the
braces becomes equal to unity, and where the proposed expression reduces to the

Abramowich-Sabin relation (Eq. 9).
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Fig. 1 Incompressible flow growth rate at fixed r = /U= 0.4 as a function of
the density ratio s = P2/P1. Solid line: spatially growing layer (Eq. 10)
with C6 = 0.37. Dashed line: temporally growing shear layer (Brown 1974).
Squares: Brown and Roshko (1974), s = 1/7,7. Circle: Mungal and Dimo-
takis (1984), s = 1.

For a free-shear layer with no external disturbances,** the value of the coeffi-

cient C6 is found to be in the range of

0.25 < C < 0.45 (11)

for the total thickness 6, or roughly half that for the maximum slope thickness 6,
(cf. Eq. 8). See, for example, Brown and Roshko (1974, Fig. 10). An understand-
ing, much less an accounting, of this rather large spread of values of the coefficient
C, which cannot be attributed to experimental errors, must await further inves-
tigations. It is not even clear, at this writing, whether the inequality bounds in
Eq. 11 represent actual limiting values, or not. What is clear is that this coefficient
depends in some way on the initial conditions of the flow. See, for example, data
and additional discussions in Batt 1975; Hussain 1978; Browand and Latigo 1979;
Weisbrot, Einav, and Wygnanski 1982; Dziomba and Fiedler 1985; and Lang 1985.

** As opposed to a forced, or driven, shear layer (e.g., Oster and Wygnanski 1982. Husain and

Hussain 1983, Ho and Huerre 1984, Roberts and Roshko 1985, Roberts 1985, %Vygnanski and
Petersen 1987, Koochesfahani and Dimotakis 1988).
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It has been recognized for some time (Bradshaw 1966) that the shear layer is

sensitive to its initial conditions. Bradshaw suggests that a ninimum of several

hundred of the initial momentum thicknesses 00 is required for the shear layer to
assume its asymptotic behavior. In view of the dynamics and interactions of the
large-scale structures in the flow, it can even be argued that this estimate may not be

conservative enough (Dimotakis and Brown 1976). These caveats notwithstanding.
sufficient experimental data exist to suggest that a turbulent shear layer will exhibit

linear growth, even within the Bradshaw -'/9o specification. but that the growth rate

may not be a unique function of the freestream density and velocity ratio. This is

illustrated in the schlieren data in Fig. 2 of a shear layer with equal freestream
densities (s = 1), as the flow velocity was increased, keeping the freestream velocity
ratio fixed at r = 0.4. As can be seen, the reduction in the shear layer growth rate
with increasing flow velocity is appreciable.

It is clear that this behavior cannot be attributed to effects scaled by the local

Reynolds number, for example. which increases linearly with x for this flow (see
Eq. 1). Were that the case, or if decaying remnants of the effects of the initial
conditions were responsible. the shear layer would be growing with curved edges
rather than along (straight line) rays emanating from a virtual origin.

10- " 1!P-

a)

b) d

Fig. 2 Shear-layer growth at a fixed ,elocity ratio (r = 0.4) and equal freestream
densities, as a function of P&,w velocity (field of view - 25 cm). The flow here
is made visible by changes in the index of refraction owing to the (small) heat
release from a diluted reactant H2 + F2 chemical reaction. (a) U1 = 13 m/s.
(b) UI = 22m/s. (c) U1 = 44m/s. (d) U, = 83m/s. Unpublished data by
Mungal. Hermanson, and Dimotakis.

This behavior is perhaps better illustrated in the schlieren data in Fig. 3,
formed as a composite of two pairs of pictures that cover roughly half a meter of
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flow. corresponding to an x/00 of several thousand. The reader is invited to sight

along the shear-layer edges of Fig. 3a. which is characterized by the better contrast.
to ascertain the claim. Note that the highest high-speed stream velocity (U[1 ) in

these data (Fig. 2) was 83 m/s. with the freestream fluid primarily composed of N.,

(diluent) gas. As a consequence, the observed reduction in growth rate cannot be

attributed to compressibility (Mach number) effects. which will be discussed later.

b)

Fig. 3 Composite schlieren data of the same shear layer (probe array at far right
at x = 45cm). (a) U'1 = 14m/s. (b) Ul = SSm/s. Unpublished data by
Mungal, Hermanson, and Dimotakis.

It is intriguing that shear-layer growth, as far downstream, as several thousand

of the original splitter-plate boundary-layer momentum thicknesses. appears depen-

dent on. if not determined by, the initial conditions. It is also intriguing that the

large-scale structure spacing appears to be the same in the low- and high-speed flow

data in Fig. 3, even as their transverse extent is being reduced: what does appear

to be changing is the large-scale structure aspect ratio.

A clue to this behavior may, perhaps, be found in terms of the notions of con-
vective and global instabilities, first developed in the context of plasma instabilities

(Briggs 1964, Bers 1975). By that criterion and the results of temporal. linear stabil-

ity analysis, the fluctuations in a (coflowing) plane shear layer must be classified as
the former, as discussed in Huerre and Monkewitz (1985). In that context. it could

be argued that the shear layer should be regarded as an amplifier of the externally

imposed disturbances, possessing a nonunique growth rate thereby. as opposed to

the behavior of aiml oscillator, which could be characterized by its own growth rate.

In my opinion, however, that analysis is a (spatially) local analysis and must be
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amended to include the contribution to the overall stability of the global effects of

the initial development region, which is characterized by the influence of the wake

introduced into the flow by the splitter plate (see, for example, discussion in Koch

1985) that Huerre and Monkewitz cite. See also Lang (1985), Koochesfahani and

Frieler (1987), and Sandham and Reynolds (1987).

Finally, one would have to incorporate the additional feedback mechanisms

present in the real flow in the analysis, such as the ones that act on the initial

region owing to the long-range velocity fluctuations induced by the downstream

structures, which span a range of lower frequencies, or pressure fluctuations feeding

back to the splitter plate tip as the last structures leave the shear layer flow domain

(test section), as dictated by the facility-dependent outflow boundary conditions

(Dimotakis and Brown 1976). In addition to the long-coherence-time behavior of the

autocorrelation functions discussed by Dimotakis and Brown, additional evidence in

those experiments for this feedback was also available in the form of a flagellation of

the initial region of the shear layer that was synchronous with the last exiting large-

scale structure in the shear layer test section. Similar evidence was also gleaned

from (unpublished) flow visualization data of the shear layer of Breidenthal (1981)

that was generated in a rather different flow facility.

More recent, independent evidence of this feedback was obtained in our labo-

ratorv in the form of upstream-propagating (weak) normal shock waves in the low

speed stream of a supersonic/subsonic shear layer (see Hall 1991, Figs. 4.16 and

4.17). While the mechanism that generates these waves is not completely clear, one

can argue that they are likely to be caused by the oscillating-piston-like action of the

fluctuating streamwise , ,city component induced by the last exiting large-scale

structure and its image on the lower flow guidewall - much like the mechanism

operative in the low-speed shear layer visualizations discussed earlier. This feed-

back mechanism would, of course, be limited to subsonic flow, or, more precisely,

to flow that connects the initial flow region and the downstream flow with an ellip-

tical region. Its absence in purely supersonic flow deprives shear layer flows of an

instability/amplification mechanism that is potentially important to the growth of

the turbulent region.

A corollary of the existence of such long-range feedback mechanisms is that

local descriptions of the dynamics of this flow may be inadequate. Certainly, the

important differences between a temporally growing layer and the full scale, spatially

growing shear layers of interest here must also be contended with. This difference

was already noted in the context of the shear layer entrainment ratio. In the present
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context, a local, temporal analysis also, fails to represent the long-range coupling of
the local behavior to non-local shear layer dynamics. The question of the applica-
bility of linear stability analysis to the description of these phenomena aside, the
classification of fluid mechanical instabilities into global and convective should also
be assessed in this light; it derives from a local, temporal instability analysis. It
is difficult to say, at this time, whether a proper accounting of all of these effects
would alter the oscillator/amplifier qualitative classification of the behavior that
stems from (temporal) convective/global instability analyses.

2.2 Compressibility effects

It has been documented that two-dimensional shear-layer growth decreases as
the flow Mach number increases, even after the coupling of the flow Mach number
to the freestream density and velocity ratio thst would result in a typical flow
facility is accounted for. See discussion in Brown and Roshko (1974, Sec. 7.1).
Analysis (Bogdanoff 1983) and experimental investigations of compressible shear
layers (Papamoschou and Roshko 1988) have suggested that, to a large extent,
the effects of compressibility can be scaled by the convective Mach numbers of the
shear-layer large-scale structures with respect to the two streams, which measure
the relative freestream Mach numbers as seen from the Galilean frame of these
structures (Eq. 6). It is interesting that one can also argue for a similar scaling
on the basis of linear stability analysis of compressible shear flow, if the convection
velocity U, is identified with the (real) phase velocity cr of the unstable mode in
the flow (Mack 1975, Ragab and Wu 1988, Zhuang et al. 1988).

For incompressible flow, t-e convection velocity Uc can be estimated by recog-
nizing that, in the large-scale structure Galilean convection frame, stagnation points
exist in between each adjacent pair of structures (Coles 1981). Continuity in the
pressure at these points (Dimotakis 1984, Coles 1985), i.e.,

1 1

Pi + 1Pi (U - U) 2 ; P2 + 1 p 2 (Uc _ E2)2  (12)

then yields, for P1 ; P2,
U1 -Uc VP2(13)

Uc-U 2

or,
Uc 1 r s 112  (13')
U- I + sI/2
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This agrees with the differently derived Brown (1974) result, the few estimates

of this quantity from the (x,t) data in Brown and Roshko (1974), as well as the
measurements of Wang (1984) in curved shear layers. See also Coles (1985, Fig. 7)
and related discussion.

For compressible flow, the corresponding result can be similarly estimated from
the isentropic relation for the total pressure, i.e.,

Ptj 1 1+ Yj - 1 Ali~ ]) 2 -14
P3  2 Cj (1a

with j = 1,2 corresponding to the high- and low-speed streams, yj the ratios of

specific heats, and aj the speeds of sound for the high-speed and low-speed stream
fluids, respectively. The superscript '(i)' over the convective Mach number denotes
that the estimate is based on isentropic pressure recovery assumptions.

Approximately equal pressure recovery from each freestream at the large struc-
ture interstitial stagnation points then yields (again, for P, ; P2)

PL _.. Pt2 (14b)
Pi P2

This is the same result as the one arrived at by Bogdanoff (1983) using different

arguments (see also discussion in Papamoschou and Roshko 1988). It also agrees
with the linear stability estimates of this quantity (Zhuang et al. 1988), at least

for subsonic convective Mach numbers. Note that, for equal ratios of specific heats

('Y1 = _Y2), e.g., if both freestreams are composed of monatomic gases, we have

C c2 (15a)

or

U1 - a (15b)
- U2 2

where, as above, the superscript '(i)' denotes an estimate based on isentropic pres-

sure recovery assumptions. As can be seen, for static freestream temperatures that
are also matched, the compressible, isentropic pressure recovery relation reverts to
the incompressible, Bernoulli equation result (cf. Eq. 13).
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It should be noted that these results are actually more robust than the assump-
tion that the pressure recovered at the large-scale structure interstitial stagnation
points can be computed assuming isentropic pressure recovery from each freestream.
If only a fraction of the total pressure is recovered at these points, it suffices to as-
sume that the losses from each side are roughly the same, in the mean. Considering
the symmetries of the flow, even when viewed as an unsteady process, such an as-
sumption may well be justified, at least for subsonic convective Mach numbers, and
yields results in accord with the experimental data cited, as well as the computa-

tional evidence (e.g., Lele 1989) to date. Secondly, we should note that the pressure
matching condition (Eqs. 12, 14) is not a force balance condition; the large-scale
structure is not some intervening impermeable body between the two streams. If
that were the case, a small "imbalance" that would momentarily decrease the veloc-
ity difference with respect to one stream would provide a positive feedback and drive
the velocity difference with respect to the same stream to zero. This relation should
rather be viewed as a nonlinear, quasistationary phase condition for the large-scale
structures: any nonabiding flow substructure is subject to accelerations in its own
frame, that will ultimately convect it with one or the other stream by the force of
the positive feedback mechanism argument just cited. Perhaps the robustness of
the large-scale flow structures in shear layers can be understood in this light. The
positive feedback convection velocity mechanism strips away all other structures!

The success of linear stability analyses of these phenomena, at least for subsonic
convective Mach numbers, can perhaps also be understood in the same light, since
the dominant surviving mode must abide by the same considerations.

Papamoschou and Roshko (1988) find that the compressible shear-layer growth

rate, when normalized by the corresponding incompressible flow growth rate esti-
mated at the same velocity and density ratio, is well represented as a function of
the isentropically estimated convective Mach number only, say, Al(') i.e.,

- r, s; M)]

Figure 4 includes the data of Papamoschou and Roshko (1988), shear-layer growth-
rate estimates computed from the earlier data of Chinzei et al. (1986) that were
processed to estimate M( ) for each of their runs and normalized to the value of

6)l

b(MAic )/6(O) at one point (filled circle), the data of Clemens and Mungal (1990),
and the data of Hall et al. (1991). The smooth curve in Fig. 4 is a plot of the
function

f(MCI) = ( - foo) e- M -+ fo • (17)
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It is drawn as a rough estimate of the effect, with a value for the asymptotic value of

f00 = 0.2. See also Bogdanoff (1983) for an additional compilation of earlier data.

1 .0 
I

.80

'0 0

'0 Al

.2 0 0 0
0

.0 I I
.0 .5 1.0 1.5 2.0

Mc I

Fig. 4 Compressible shear-layer growth data, for a range of freestream velocity and

density ratios, as a function of M(' ) . Superscript '(i)' omitted from figure
legend. Squares: Papamoschou and Roshko (1988) data. Circles: growth
rates estimated from the Chinzei et al. (1986) data, normalized to the filled
point. Triangles: data of Clemens and Mungal (1990). Stars: M1 > 1 data
of Hall et al. (1991a). Crosses: M1 < 1 data of Hall et al. (1991a). Smooth
curve is a plot of Eq. 17.

The data in Fig. 4 suggest that the convective Mach number need not be very

large for compressibility effects to be significant. Secondly, for Mc(1 ) > 0.8, the

growth rate appears to reach an asymptotic value roughly 0.2 of its incompressible

counterpart. This is at variance with the results of two-dimensional, linear, shear-

layer stability analyses (e.g., Gropengiesser 1970, Ragab and Wu 1988, Zhuang et

al. 1988), which find that the growth rate tends to very small values, as M(') -- oo.

If the stability analysis results are accepted at face value, the applicability of such

an analysis aside for the moment, the discrepancy could be attributable to other

factors. In particular, it appears likely that three-dimensional modes are more

unstable in the limit of large Mach numbers, as was suggested by Sandham and

Reynolds (1989a). Alternatively, the Papamoschou and Roshko experiments were

conducted in an enclosed test section, as opposed to the stability analyses which
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were carried out for unbounded flow. For supersonic convective Mach numbers,
a closed test section can act as a wave guide, providing a feedback mechanism

between the growing shear layer structures and the compression/expansion wave
system whose energy would otherwise be radiated and lost to the fax field (Tam

and Morris 1980, Tam and Hu 1988, Zhuang et al. 1990). Finally, recalling our
aside, we should recognize that, for supersonic (or even transonic) convective Mach
numbers, we expect shocks to form in the flow, a feature that cannot adequately be
captured by linear stability analysis.

It should be noted that it is not clear at this writing whether the observed
limiting value of the ratio 6[Mi ) /b[ = 0)], for 0i) >> 1, is intrinsic to the

behavior of the fully developed compressible shear layer, or depends on the details
of the flow geometry, e.g., the distance of the upper and lower flow guide walls from
the layer, whether only one or both streams are supersonic, etc. In the context of the
potential for hypersonic air-breathing propulsion and flight, for example, whether
the growth rate tends to zero with increasing Mach number is an important issue;

an ever decreasing shear layer growth with increasing Mach number hardly bodes
well for efficient supersonic mixing and combustion!

As can be seen in the data in Fig. 4, there are some "rogue" points at low
convective Mach numbers, from the data of Hall et al. (1991a). It is significant that
all the supersonic shear layer flow data of Hall et al. were taken at the same high-
speed freestream Mach number of M1  - 1.5. For these shear layers, the various
values of the convective Mach number were realized using different compositions
for the freestream gases. The low growth rates of the "rogue" points corresponded
to shear layers with low freestream density ratios, i.e., for P2/P1 < 1. On the
basis of these data, we may infer that the utility of the convective Mach number as
the scaling parameter of compressibility effects on shear-layer growth rates, which is
based on a temporal growth picture in the Galilean frame moving with the turbulent
structures, cannot describe all the factors that influence this behavior. Additional
evidence of this shortcoming will be discussed later.

Subsequent to his initial investigations, Papamoschou (1989) conducted a se-
ries of experiments in which he investigated the convection velocity of the large-
scale structures, for a range of freestream Mach numbers and various gases. In
those experiments, he found that, at high convective Mach numbers, the large-scale
structures seemed to be "dragged" by one stream or another, at variance with the
matched, isentropic pressure recovery model of Eq. 14. See Fig. 5a for a plot of the
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Fig. 5a Supersonic shear layer (M1 > 1) convective Mach number experimental
data of Papamoschou (1989, squares); Fourguette et al. (1990, triangle) and
Hall et al. (1991a, circles). Dashed line computed for 3yj = Y2, tisuning

Uc = U (Eq. 15a).

Papamoschou (1989) and some additional, more recent, data.t As can be seen, the
experimental data are found to be close to the isentropically estimated values only
for convective Mach numbers less than 0.5, or so. Papamoschou (1988, 1989) of-
fered a qualitative description of how shocks could be responsible for this behavior,

crediting D. Coles for the suggestion, which was made before the experiments were
conducted, that the effects of shocks needed to be incorporated in the analysis.

We can appreciate that for supersonic, or transonic, convective Mach numbers
the freestream flow over the turbulent large-scale structures can support a system

of expansions and shocks. As a consequence, the assumption of isentropic, approxi-
mately matched, pressure recovery from each stream (Eq. 14) can be expected to be
inadequate at supersonic convective Mach numbers. In that case, streamlines that
end up on interstitial stagnation points from each freestream will have to traverse
a shock, or, more likely, a system of shocks for turbulent flow, to connect to the
freestream static conditions and will have suffered a loss in total pressure that may
be reasonably well approximated by that of a normal shock.

t The point (MI, Mc2 ) derived from the Fourguette et al. (1990) data was computed using the
quoted (directly measured) value for the convection velocity of Uc = 352 m/s.



17

This leads to the following possibilities, depending on which stream has. or can
support, shocks. In particular, we can have shocks in the high-speed stream, with
a shock-free low-speed stream, i.e.,

Psi 2Z Pt2 (18a)

Pl P2

low-speed stream shocks, with a shock-free high-speed stream, i.e.,

Pti _ Ps2 (18b)
Pi P2

while for shocks in both streams, we must have

Psi_ ps2 (18c)
Pi P2

In these expressions, Pt/P is the isentropic total-to-static recovery pressure ratio

(Eq. 14) and Ps/P is the ratio of the post-normal shock total pressure to the free
stream static pressure, given by (Rayleigh pitot tube formula),

P~S + I A,"M2)/(-) 2"y2 "r- 2  'Y- 1 ) - 1/ ' 'r- 1 '  (9

P 9 + MS -Y+ 1(19)

for M, > 1, where .Al is the shock Mach number (e.g., Liepmann and Roshko 1957,
p. 149).

As was noted by Papamoschou (1989), the estimation of the convective velocity

Uc of the turbulent structures using these relations requires the shock Mach number

M. to be specified, which is not known a priori. This issue was addressed in a recent
proposal (Dimotakis 1991), which is briefly outlined below.

Returning to Fig. 5a, for convective Mach numbers that are not small, we see
that the data appear to fall in two groups: decidedly above, or below, the Me1 = Mc2
dashed line (cf. Eq. 15 and related discussion). These two groups correspond to su-
personic shear layers with subsonic and supersonic low-speed streams, respectively.
In the context of the previous discussion, we can understand this by assuming that,

for M1 > 1 and M2 < 1, the shocks are borne by the low-speed freestream, whereas,
for purely supersonic flow, i.e., M1 , M 2 > 1, the shocks are borne by the high speed
stream. We will accept this as an empirical stream selection rule.

For subsonic, but near sonic, convective Mach numbers, evidence for the for-
mation of shocks can be found in the calculations of Lele (1989), and Vandromme

and Haminh (1989, cf. Fig. 2), for example, where one expects weak shocks (dubbed
"shocklets") confined to the vicinity of the shear zone. See cartoon in Fig. 6a. No
experimental evidence for these transonic shocklets is available at this writing.
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Fig. 6a Proposed vortex/shock configuration cartoon, sketched for a shock borne
by the high speed stream and a transonic convective Mach number, i.e.,
Me1 < 1.
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Fig. 6b Proposed supersonic vortex/shock configuration cartoon, sketched for a su-
personic convective Mach number (MA1 > 1).

For supersonic convective Mach numbers, experimental evidence has been avail-

able for turbulent-structure-generated shocks from the core region of supersonic

jets, i.e., Lowson and Ollerhead (1968), Tam (1971), and Oertel (1979). More re-

cently, such evidence has been documented in our laboratory for a two-dimensional,
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supersonic shear layer in Hall et al. (1991a) and Hall (1991). In the Hall 0i al. ex-

periments. a shock/expansion wave system extending into one of the free streams.
as sketched in Fig. Gb. was found.

An example of such a wave system, for a M1 = 1.5 He high speed stream, over

,112 = 0.35 Ar low speed stream shear layer, is reproduced in Fig. 7 (from Hall et al.
1991a, Fig. 5). See also Hall (1991, Fig. 4.11) for similar data from a . 1 1 .5 He

high speed strean. over -112 = 0.3 N 2 low speed stream shear layer.

Fig. 7 Schlieren data for a - 1 = 1.5 He high speed stream, over M!2 = 0.35 Ar low
speed stream shear layer. Note travelling oblique shock system in low speed
stream (Hall et al. 1991a. Fig. 5).

Given the freestream j that carries the shocks and the shock Mach number,
M~j. or. equivalently, a given shock strength parameter

- .MIJ' (20)

the convection velocity can be estimated by computing the total pressure loss

through the shocks (cf. Eqs. 18). This yields a continuum of solutions for U, vs.

the shock strength parameter Xj.

With these assumptions, the strength of the shock can be estimated if the
turning angle AO through which the flow has been expanded, prior to crossing

the near-normal shock, is known. The turning angle A06 in the Jth stream can

be estimated, in turn, as the difference of the corresponding Prandtl-Meyer angles

between the flow just ahead of the shock and the free stream (or sonic conditions).

i.e.,

AO = OpM(A 5 j) - Opro(A'I), for Mj > 1 (21a)
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where OpM(M), defined for M > 1, is the Prandtl-Meyer angle function (e.g., Liep-
mann and Roshko 1957, p. 99). If the convective Mach number Mj in the jth

stream is close to, but less than, unity (transonic Me,), the turning angle Aoj will
be computed using

Aoj = OPM(Mlsj) , for Mlj < 1. (21b)

The latter is equivalent to starting the calculation at the location where the stream-
line crosses the sonic line to enter the supersonic bubble. See cartoon in Fig. 6a.

Depending on the flow parameters, the pressure-matching condition can lead
to several solution branches. Given the free stream that carries the shock and the
shock strength, several branches will typically exist, with a continuum of solutions
for the convection velocity Uc as a function of the shock strength parameter X. The
proposed ansatz is that the convection velocity of the large scale structures is such

as to render the flow stationary. One can argue for this conjecture by noting that if
the shock-generating flow structures are to represent a quasi-steady, convecting flow
configuration, they must be able to persist in the presence of turbulent fluctuation
disturbances.

We note here that a Galilean-invariant analysis, i.e., one based on the temporal
behavior of the large scale structures in the convected frame, as in the cartoons in
Figs. 6a and 6b, cannot capture the (laboratory frame) empirical stream selection
rule for the stream that carries the shocks cited above. As a consequence, we will
accept the value derived from the proposed stationary flow ansatz when it yields
solutions in accord with the empirical selection rule.

When the flow is computed as a function of the shock strength parameter
Xj = M /Mcj, corresponding to a shock in the Jth stream, one finds that the
solution branches fall into two classes. In the first solution class, Type I flow, the
turning angle A9 can be computed by assuming that the flow chooses the stream j
and the shock Mach number, i.e., the shock strength parameter Xj = Mlj/Mc., so
as to render the turning angle A86 stationary (a maximum). This corresponds to

a stable flow configuration wherein small changes in the shock Mach number Al',j
result in quadratically small changes in A~j. Alternatively, in Type II solutions, it
is the shock strength parameter X that is stationary with respect to small changes
in the turning angle AO, corresponding to the maximum admissible value for X.
that yields a solution for Uc.
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It is found that both Type I and Type II solutions can be admissible (in the

same flow). In the latter case, one can argue for a selection rule which favors
the Type I branch, over the Type II solution branch, as being the more robust

configuration of the two. If more than one solution branch of the same type is

possible, the proposed selection rule is that the branch that yields the lower total
pressure is chosen by the flow. In other words, the flow will try to satisfy the

pressure matching condition at the lowest stagnation pressure possible, generating

the shock with the requisite strength. See Dimotakis (1991) for a more detailed

discussion.
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Fig. 5b Experimental data of (M 1 , M, 2 ) from Fig. 5a. Computed points are joined
to corresponding flow data points by straight lines, asterisks corresponding
to Type I and crosses corresponding to Type II flows.

The results of calculations based on the proposed scheme are summarized in

Fig. 5b, which compares the experimental data in Fig. 5a with the theoretical
calculations. The estimates, based on the proposed scheme, for flows found to yield

Type I solutions are denoted by asterisks, while those corresponding to Type II

solutions are denoted by crosses. If the computed values are found to fall outside the

extent of the experimental data point symbols, they are joined to the corresponding

data points by straight lines. There is one case for which the stationary shock is

borne by the stream that is not accord with the empirical stream selection rule.
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This corresponds to the M1 = 3.2 Ar and M2 = 0.2 Ar shear layer of Papamoschou

(1989). No computed (MC , Uc 2 ) point is indicated for it.

It may be interesting to also ask for input from linear stability analyses of this

flow, with the appreciation that finite amplitude wave effects, such as the loss in

total pressure associated with entropy production in shock waves, cannot properly

be captured by such analyses. Nevertheless, the very small entropy generation from

weak oblique shocks, as would be expected under many flow conditions, might ren-

der linear stability analysis results useful for convective Mach numbers that are

not too high. Such an investigation was specifically undertaken by Sandham and

Reynolds (1989b). The agreement for low convective Mach numbers is quite good.

At higher convective Mach numbers, however, the linear stability analysis calcula-

tions underestimate the departure of the convection velocity fiom the isentropically

computed values. As was noted, this is as one would anticipate. It is interesting

that stability analysis appears to predict the correct shock-bearing stream for the

case not computed in Fig. 5b, but predictc the wrong one for the flow with the

highest Me 2. See Sandham and Reynolds (1989b, Fig. 2.25).

We may conclude that available data to date appear to be reasonably well

accounted for by assuming the existence of a turbulent structure, convecting with

a well-defined speed and generating a set of shocks in one of the two free streams.

There is some evidence, however, that shear layers at higher flow Mach numbers

yet the shear layer may support shocks in both streams (Oertel 1979). If that is

borne out by future experiments, we can expect that the large asymmetries in the

apparent velocity ratio rc in the turbulence convection frame, i.e.,

7C - V,- U ' (22)

documented in Fig. 5, will be mitigated by the more symmetric flow configuration

of turbulent-structure-generated shocks borne by both freestreams.

These results are important in a variety of contexts. From the point of view of

chemical reactions and combustion, the apparent velocity ratio rc (Eq. 22) seen by

the turbulent structures is an important factor in the shear layer entrainment ratio

and the consequent stoichiometric composition of the molecularly mixed fluid in the

layer, as we will discuss later. The stream selection rule and the proposed ansatz

of shock strengths selected by the condition of stationarity suggest that one can

expect jumps in re, potentially, as a result of small changes in the flow parameters.
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From a theoretical vantage point, we should recall that the empirical stream
selection rule is not Galilean-invariant and, therefore, it cannot be captured by the
type of analysis outlined above. As was noted in the context of the discussion on
shear layer growth rate, the fact that a supersonic/subsonic shear layer contains an
elliptical region connecting the inflow and outflow boundary conditions needs to be
incorporated in the analysis. Evidence of the need for a global, rather than local,
description of these flows was also discussed earlier in the context of the use of the
convective Mach number to account for the compressibility effects on shear-layer
growth rates. At least for shear-layer flows which include an elliptical region, i.e., a
subsonic low-speed freestream, it would appear that a more complicated description
is required. The resolution of these and other issues must await the results of several
investigations currently in progress.

2.3 Heat-release effects

Some experimental investigations have studied the effects of heat release on
the growth rate of chemically reacting shear layers (e.g., Wallace 1981, Hermanson
and Dimotakis 1989), as well as experiments with combusting shear layers at high
levels of heat release (e.g., Ganji and Sawyer 1980, Pitz and Daily 1983, Daily
and Lundquist 1984, Keller and Daily 1985). Useful information has also been
derived from computations (e.g., McMurtry et al. 1986, McMurtry and Riley 1987),
which is in qualitative accord with the experimental findings, even though these

computations have perforce been conducted at Reynolds numbers that do not meet
the fully developed flow criterion of Eq. 1.

One might argue that dilatation owing to heat release in a chemically reacting
shear layer, which is confined to the shear-layer wedge, might result in an increase
in shear-layer growth. Although the basis of that intuition is well founded, the
inference is not. One does observe a displacement velocity in the far field away
from the shear layer, which increases with the amount of heat released. This can
be measured experimentally as a displacement thickness 5*/x by noting the angle
of, say, the lower freestream flow guide wall required to maintain a nonaccelerating
flow (dp/dx = 0), as a function of the amount of heat release. See Fig. 8.

At least for subsonic flow and equal freestream densities, other parameters held
constant, one observes a decrease in the shear-layer growth rate with increasing heat
release. This behavior is depicted in the data of the 1% thickness in Fig. 9, taken
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Fig. 8 Normalized shear-layer displacement thickness vs. heat release. Circles:
Mungal (unpublished) data. Squares: Hermanson and Dimotakis (1989).

from Hermanson and Dimotakis (1989. Fig. 5). Note that, in these experiments,

the presst : gradient was maintained close to zero by adjusting the lower stream

guide wall as necessary. These data suggest that the decrease in the shear-layer

growth rate with heat release is approximately given by (q = Ap/p, recall Eq. 7)

Pr = 0.4, s = 1; q) 1 - Cqq (23a)

(r= 0.4, s = 1; q 7- 0)

with

Cq "-1 0.05. (23b)

While these experiments were conducted at a fixed velocity ratio r = 0.4 and

matched freestream densities (s = 1), one can speculate that heat-release effects

manifest themselves as a reduction in the growth-rate coefficient C6 (Eqs. 9 and

10), with Eq. 23 expressing the dependence of C 6 on q. In any event, at least for

subsonic shear layers, the effect of heat release on the growth rate is slight (see also

Daily and Lundquist 1984).

The physical implication is that the outward displacement velocity owing to

heat release impedes the entrainment process to an extent that more than offsets

the effects of dilatation. It is interesting that this reduction in growth rate is also

found to be consistent with the assumption that the heat release and dilatation

effects leave the u-  velocity correlation largely unaltered. The reduction in the

growth rate can then be approximately accounted for by noting the reduction in



25

0.20

0.18

0.16

x -
0.14o o ' i .

0.12

0.10 _____
0 0.1 0.2 0.3 0.4

Fig. 9 Normalized 1% thickness vs. heat release. Triangle: Wallace (1981). Circles:
Mungal (unpublished data). Squares: Hermanson and Dimotakis (1989).
Note displaced origin.

the turbulent stress r = pu'v' in the layer; a result of the reduction in the density
profile p (y/x) owing to heat release. It should be noted that it would probably be
difficult to argue for such an assump' i-n a priori. See discussion in Hermanson and

Dimotakis (1989), Secs. 5.2 and 5.4.

At high Reynolds numbers, a substantial volume fraction in the turbulent shear
layer is occupied by fluid that is not molecularly mixed (independently estimated
to be roughly 1/2 at the conditions of the Hermanson and Dimotakis experiments)
so that, even with fast chemical reactions characterized by large adiabatic flame
temperatures, there will be a limiting value of the expected reduction in Ap/p
within the layer owing to heat release. This is a consequence of the large pockets of

entrained, unmixed fluid whose density is essentially unaltered by the combustion

process. This behavior is illustrated by the data in i ig. 10, where the estimated
mean density reduction Ap/po is plotted vs. the normalized adiabatic temperature
rise AT/TO. These data were recorded at high Reynolds numbers (Re , 6 x 101),
for several values of the freestream stoichiometric mixture ratio 0, an important

quantity that we will discuss later in the context of chemical reactions.

A useful test model of the behavior with increasing heat release is one in which
vortical structures tend to a configuration of low-density (hot) cores and are sur-

rounded by irrotational, recently entrained, unmixed (cold) fluid. Using this picture,

the expected mean density reduction in the combustion zone can be estimated. In
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Fig. 10 Mean density reduction Ap/p vs. adiabatic flame temperature rise ATj/To,
where To is the (common) freestream temperature. Squares/asterisk: 0 = 1.
Circles: 0 = 1/2. Triangles: 0 = 1/4. Solid symbols: Mungal and Dimo-
takis (1984). Open symbols: Hermanson and Dimotakis (1989). Asterisk:
Wallace (1981). Smooth line computed using Eq. 23.

the notation of Eq. 4, we find

AP iwi(~a~ (23a)

The smooth line in Fig. 10 was computed using this expression and constant, heat-
release-independent values of

m P0.63 - = 0.5 . (23b)
Sbm

It is interesting that the resulting curve does as well as it does, suggesting that
the simple model may have merit even at moderately high values of the heat release.

As we shall see later, the inferred value of 0.63 of the mixed fluid fraction tm/6 is a
little high. It should be noted, however, that the mean density reduction values in
Fig. 10 were estimated here using the reciprocal of the mean temperature measured

in the combustion zone, as opposed to the mean of the reciprocal temperature,
which would have provided better estimates. Additionally, of course, the mixed

fluid fraction is not likely to be exactly constant, i.e., independent of ATf ITO.
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2.4 Pressure gradient effects

The effects of pressure gradient on shear layer growth were discussed by Sabin

(1965) and have been investigated in non-reacting shear layers (Rebollo 1973), and
in reacting shear layers (Keller and Daily 1985, Hermanson and Dimotakis 1989) for
incompressible flow conditions. In the case of a favorable pressure gradient (dp/dx <

0) and equal free stream densities (s = P2/PI = 1), it was found (Hermanson and

Dimotakis 1989) that the decrease in the growth could be accounted by interpreting

Eq. 9 as a local relation. The argument, which was suggested by M. Koochesfahani
and is akin to some of the ideas put forth by Sabin (1965), is summarized below.

The local rendition of the Abramowich-Sabin relation (Eq. 9) becomes

db 1 - r(x)
dx 1 + r(x) (24a)

with U2 (x)
r(x) - U2(X) (24b)

the local velocity ratio. This can be computed by applying the Bernoulli equation

in each of the freestreams, and yields

S1 - Cp 2 (X)

r(x) = ro 1- SrC P
2 (x) (25a)

where
ro -U 2(0) (25b)

=U 1 (0)(5b

is the freestream velocity ratio at x = 0,

Ax -p v(o) (25c)Cp2(X =_ 1 2 (0)

is the local pressure coefficient normalized by the low-speed stream dynamic head at

x = 0, and s = P2/PI is the freestream density ratio. It can be seen that a favorable
pressure gradient is expected to decrease, or increase, the shear-layer growth rate,

depending on whether the product s r 2 is less, or greater than, unity, respectively.

The converse is true for an unfavorable pressure gradient.

For a specified pressure gradient, Eq. 25 for the local velocity ratio can be
used to integrate the local growth rate (Eq. 24) to yield the local shear layer width

b [Cp2 (x)] at the station x. The results of this proccdure are in accord with the

observed effects, at least for the range of values of the pressure coefficient at the

measuring station that were investigated (Hermanson and Dimotakis 1989, Sec. 8).
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3. Mixing: m/6

As alluded to in the preceding discussions, one finds that, at sufficiently high

Reynolds numbers, a substantial fraction of the fluid within the 6/x shear-layer
wedge is not molecularly mixed. Additionally, at least for incompressible shear

layers, the available evidence suggests that the mixed fluid in a turbulent shear
layer exhibits the following characteristics:

1. The mixed fluid composition (averaged across the shear-layer width b/x)

is not generally centered around a 50:50 mixture but favors a composition
that is a function of the freestream density and velocity ratio.

2. The amount of mixed fluid, beyond the downstream location where the
shear layer has attained fully developed, three-dimensional flow status
(e.g., Eq. 1), depends weakly on the local flow Reynolds number. The
evidence suggests that, at least for gas-phase shear layers, it decreases as

the Reynolds number increases.

3. The mixed fluid fraction 6m/6 is found to depend on the fluid Schmidt
number Sc =_ v/V (Eq. 3).

A large number of models are employed today in efforts to account for the
observed turbulent shear-layer mixing phenomena and, whereas they all differ in
the details of their implementation, they can be classified, in my opinion, into two
main categories: models that ultimately rely on some form of Reynolds averaging
and/or turbulent gradient transport, and models that do not. In the discussion
that follows, models which cannot account for the characteristics just listed will
not be considered in the attempt to account for shear-layer mixing phenomena.
Although it could be argued that this need not be so, this criterion, to the best of
my knowledge, presently eliminates models that rely on gradient transport ideas.
For an opposing viewpoint, the reader is directed to the review article by Bilger
(1989) and references therein. Unfortunately, since molecular mixing takes place
throughout the spectrum of spatial and temporal scales, direct computations at high

Reynolds numbers are out of the question for now, at least, and we must resort to
some kind of modeling for some time.

It may appear surprising that Schmidt number effects are given so much weight
when it could be argued that most turbulent mixing/combustion phenomena are

encountered in gas-phase flows. There are two issues here. First, although it may be
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that most turbulent combustion occurs in gas phase flows, it is certainly not so that
all of it does (cf. underwater, liquid metal, particulate combustion. etc.). Second.

if we are to formulate models on which we must rely for predictions and design
outside the range of experience that was used to validate them. and not just use

them as interpolative french curves, we must at least require that they adequately

account for the known turbulent mixing behavior. In the case of Schmidt number
effects, the issue is particularly important, inasmuch as those effects are a direct

manifestation of, and provide important clues to. the role of the small mixing scales
of the problem, which must be correctly accounted for (if not described) by turbulent

mixing models.

3.1 The mixing transition

The flow in a two-dimensional shear layer issuing from a smooth splitter plate
with a sharp trailing edge and low-turbulence-level freestreams originally develops

as two-dimensional flow. This flow is characterized by large, two-dimensional. vor-
tical structures (e.g.. Winant and Browand 1974, Corcos and Sherman 1984), but is
susceptible to a three-dimensional instability mode of counter-rotating streamwise
vortices (Konrad 1976, Bernal 1981, Alvarez and Martinez-val 1984, Corcos and Lin

1984, Daily and Lundquist 1984. Browand 1986, Bernal and Roshko 1986, Metcalfe
et al. 1987, Knio and Ghoniem 1988, Lasheras and Choi 1988, Rogers and Moser
1991), which spawn the transition to three-dimensional, fully developed turbulent
flow, leading to substantial increases in the mixed fluid fraction (Konrad 1976,

Bernal et al. 1979, Breidenthal 1981, Roberts 1985, Koochesfahani and Dimotakis

1986). This is illustrated in the liquid-phase flow laser-induced fluorescence data
reproduced in Fig. 11, recorded before (Re ; 2 x 10) and after (Re - 2.3 x 10')
the mixing transition, respectively. Note that, in the pre-mixing-transition data.
the entrained fluids participate in the large-scale motion but remain essentially un-
mixed. Under these conditions, the surface-to-volume ratio of the two-dimensional

interfacial area between the two entrained fluids is relatively small. In particular,
when multiplied in water (V ;- v/103 ) with the small local transverse diffusion

thickness straddling this interface, i.e.,

Ap c I-j7. (26)

where a is the (local) strain rate (see Marble and Broadwell 1977. Broadwell and

Breidenthal 1982, and Dimotakis 1987, Sec. 2.2), it yields a negligible mixed fluid
volume fraction Sm/6 within the shear layer width 6/x.
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Fig. 11 Liquid-phase shear-laver mixing digital (y.t) image data at a fixed stream-
wise location x (Koochesfahani and Dimotakis 1986). Left image: pre-
mixing-transition (Re - 2 x 103). Right image: post-mixing-transition
(Re 2.3 x 104 ).

The large increase in interfacial area following the mixing transition changes

this tally, resulting in a mixed fluid fraction, under these conditions. of

0.26 in water:

(27)

0.49 , in gas-phase flow.

We -;ill substantiate these value, latpr. It is interesting that the growth rate of the

shear layer does not appear to respond to this mixing transition, suggesting that

it is dominated by the two-dimensional large-scale dynanics (see Fig. 3 and also

discussion in Corcos and Lin 19S4). The evolution of 6(x) and tre(x) through the

mixing transition is sketched in Fig. 12.

It is not clear, at this time. how this picture is altered by compressibility effects.

or even whether the criterion of a minimum local Reynolds nuInler of 10' will be

good when the convective Mach num)ers become large. The depressed growth rate

of the two-dimensional Kelvin-Helmholtz disturbances. discussed in the previous
section. may well alter the environment in which the three-dimensional niotions de-

velop. which are vital for the large interfacial area generation (see also Demetriades

1980: Demetriades. Ortwerth and Moeny 1981: and Demetriades and Brower 19S2).

At inghr convective Mach numbers, shocks can certainly be expected to play an

itportant role in this process. Whether that role enhances a transition to three-

dimensionality and improved mixing nmust also await future investigations.
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Fig. 12 Sketch of shear layer and gas-phase mixed fluid thickness growth through

the mixing transition.

3.2 Entrainment ratio

We can think of the growth of the shear-layer region 6 /x as the increasing

participation of freestream fluid in the turbulent process, i.e., the entrainment,

as the downstream distance from the splitter plate increases. In this context, the
preceding discussion on shear-layer growth addresses the total entrainment flux from
each of the two freestreams, without regard as to the relative amounts from each

freestream, i.e., the entrainment flux ratio. It is clear, however, that the entrainment

flux ratio, that is supplied to the mixing processes of turbulence, must be taken into
account in the tally of the resulting range of compositions of the mixed fluid.

An important conclusion drawn by Konrad (1976) was that a shear layer en-
trains fluid from each of the two freestreams in an asymmetric way, even for equal

freestream densities. In particular, for equal freestream densities (s = 1) and a

freestream speed ratio of r = 0.38, Konrad estimated a volume flux entrainment
ratio of E, ; 1.3. For a freestrearn density ratio of s = 7 (high speed He, low speed
N2 ) and the same velocity ratio, he estimated an entrainment ratio of E, ; 3.4.

Brown (1974) proposed an estimate for the entrainment based on the freestream
velocity ratio, as seen from the frame of the large scale structures, i.e.,

EU - Uc s1/2

UC - U2

(cf. Eq. 13). Although the density ratio dependence of this proposal is in accord with
the ratio of the two E, experimental estimates of Konrad, i.e., 3.4/1.3 ; 2.6 - VT,
it cannot account for the asymmetric entrainment ratio that was observed with
equal freestream densities.
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This behavior can be understood in terms of the upstream/downstream asym-
metry that a given large-scale vortical structure sees in a spatially growing shear
layer and the fact, also noted by Fiedler (1975) in a different context, that a vortex
entrains from each stream from its "lee side". See Fig. 13. For incompressible flow,
simple arguments based on the symmetry of the flow in the large-scale structure
convection frame (Dimotakis 1984), suggest that, for a similarly growing shear layer,
the volume flux entrainment ratio can be estimated by the expression

Uv U 2U ( X)~ i+ -) ' (28s)

where £/x is the large-structure spacing-to-position ratio. In this expression, the
quantity in parentheses is always greater than unity and the consequence of the
spatial growth of the shear layer and the self-similarly increasing large-structure
spacing with streamwise distance. It would be equal to unity for a temporally
growing layer. Fitting the available data, one finds that the relation (r = U2/LU)

1-r- CI , (29a)
x l+r

with

Ct 0.68, (29b)

is a good representation for t/x, independently of the freestream density ratio.

U U

. - 1 X n

x Xn+l

-U -U
C 2

Fig. 13 Large-structure array and induction velocities in vortex convection frame.

We argued earlier that, for incompressible flow, r, = (U -Uc)/(U, -U 2 ) , s /

Consequently, for matched freestream densities and Konrad's freestream speed ratio
of r = 0.38, we estimate (Eq. 28) that

E,(r=0.38, s=1) ; (1+ ) + 1.3.
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For the He/N 2 shear-layer data at the same speed ratio, we estimate that

Ev(r=0.38, s=7) z 71/2 x1.3 z 3.4 .

Both estimates are in rather good agreement with Konrad's experimental values.

For incompressible flow, the mass flux entrainment ratio Em can also be simi-
larly estimated, i.e.,

Em = Pl (U1 - U 1 + - ,(30a)
P2 Ur - U2 X

while for gas-phase flows, the molar entrainment ratio E, would be given by,

En = L2 , (30b)
m,

where Mj denotes the molecular mass of the gas comprising the jth freestream.

The arguments that led to the expression for the entrainment ratio for incom-
pressible flow (Eq. 28) should also be useful for compressible flow, noting that, in
this case, U, must be computed accordingly (i.e., Eq. 14 or 18, as appropriate).
Additionally, in the presence of shocks, one should not rely on the volumetric en-
trainment ratio E, but rather on the mass entrainment ratio En; the product p u
is conserved across a (normal) shock. Nevertheless, we recognize that in the pres-
ence of shocks borne by one freestream, or the other, but not both, the underlying
symmetry of the flow, in the large-scale structure convection frame, is lost (e.g.,
Figs. 6). As a consequence, the correct expression for Em will also include an as yet
undetermined multiplicative factor, of order unity, that captures this effect.

We can also expect that a revision of Eq. 29 for the spacing-to-position ratio
e/x would be necessary for compressible shear layers. A first guess is that £/x might

scale with bIx, as it does for subsonic flow, i.e.,

Ir, s; M() -+ 0s = 1;M(')

with a plausible extension of the form, as was assumed by Dimotakis and Hall
(1987),

r 0)[r, s; MW)] C, - f[--c,] , (31)

where f[ M() ] is an estimate of the Papamoschou and Roshko compressibility effect
in the shear-layer growth, e.g., Eq. 17.
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If one were to assess the relative importance of these different effects for com-

pressible shear layers, one effect is likely to dominate. It is the asymmetry in the
convective Mach numbers for flows that support shocks on one of the shear-layer
freestreams (recall Fig. 5b) and the relative freestream speed ratio, rc (Eq. 22), in

the turbulent-structure convective frame. This can be illustrated by considering
the M 1 = 1.5 He, M 2 = 0.3 N2 supersonic shear layer, documented by Hall et al.
(1991a) by way of example. For this shear layer, we might have predicted a relative
velocity ratio, based on an isentropic estimate for Uc, of

v, -UP
- - _ 2.1 . (32a)

Instead, we have
U 1 -Uc

r - U,-U !- 0.36, (32b)

using the convection velocity estimate of U, ; 880 m/s that is suggested by the data

and also derived using the stationary flow ansatz described earlier (see Dimotakis
1991 for more details). The t,.o estimates of this important factor span unity and

differ by a factor of 6. Su i a layer, rather than being high-speed fluid rich may be
low-speed fluid (depe" _ing on the other factors that enter in the entrainment ratio

estimate).

In the context of mixing and the resulting range of mixed fluid compositions
within the shear layer, it is useful to define a conserved scalar which denotes

the mole fraction of high speed stream fluid in the molecularly mixed fluid (e.g.,

Bilger 1980). Accordingly, = 0 corresponds to pure low-speed-stream fluid, = 1
represents pure high-speed-stream fluid, and = 1/2 represents a 50:50 mixture. In
this notation, the entrainment ratio E measures the flux of I = 1 fluid entering the

turbulent mixing region, per unit flux of = 0 fluid.

The asymmetric entrainment ratio suggests a zeroth order model for mixing in
a two-dimensional shear layer, which entrains = 1 and = 0 fluid from each of

the freestreams at a ratio E, respectively, that was employed by Konrad (1976) in

his discussion of his concentration fluctuation data. The two entrained fluids are

mixed by the efficient action of turbulence and can be expected to tend toward a

mixed fluid composition of

E -E+ (33)
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I)-1 ' ' '- '- V= E

Fig. 14 Stirred bucket mixing. E corresponds to the right/left faucet flow-rate
ratio. Note that as the stirring rate is increased, at fixed faucet flow rate,
p( ) d6 - 6D(6 - 6E)d6, where 6E = E/(1 + E).

A useful cartoon, depicted in Fig. 14, is that of a bucket being filled by two

faucets running with unequal flow rates, as a laboratory stirring device mixes the
effluents. We can also think of a hot/cold water faucet and the (average) tempera-

ture in the bucket; it is only a function of the ratio of the two flow rates. For all the

complexity of the ensuing turbulent motion, we would expect to find a probability

density function (PDF) of mixed fluid compositions in the bucket clustered around

the value of the mixture fraction given by Eq. 33, where E in our cartoon corre-

sponds to the ratio of the flux from each of the two faucets. Fluid homogenized at

this composition is an important component in the mixing model by Broadwell and

Breidenthal (1982), as we will discuss below. One can appreciate that the range of

compositions one should expect to encounter in the bucket depends on the relative

rate of inflow to mixing. One can also appreciate that as we lower the combined

faucet flow rate, keeping the ratio and the stirring fixed, we can expect the mixed

fluid to be homogenized with a composition PDF tending to a Dirac delta function

centered at 6E, i.e.,

p(6)d6 --+ pH(6)d6 = 6D(6--E)d , (34)

in the limit. Similarly for a fixed faucet flow rate as the stirring rate is increased.

See discussion, for example, in Levenspiel (1962).
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The effects of the asymmetric entrainment ratio can be seen in the PDF mea-

surements of made by Konrad (1976) in a gas-phase, matched freestream density

(I He: 2 Ar) / N2 shear-layer experiment, using an aspirating probe (Brown and

Rebollo 1972). See Fig. 15. Note that the most probable value of the high speed fluid
fraction , denoted as C(N 2 ) in the figure, is very close to E -_ E/(1 + E) = 0.57,

corresponding to the (independently) estimated matched density entrainment ratio
of E 1.3 (see Konrad 1976 for details).

0.2

6.0 ." 60 L 2 OU Y

4.0

-0.

0.2 0.4 0.6 0.8 1.0
C(N)

Fig. 15 Gas-phase PDF measurements in a matched density, r = U.2/ 1 , 0.4
shear layer beyond the mixing transition (Konrad 1976). High speed fluid
mixture fraction is denoted by C(N2 ).

Similar measurements were obtained in water, in which the PDF was measured
using laser-induced fluorescence techniques in a shear layer at the same velocity

ratio (Koochesfahani and Dimotakis 1986). See Fig. 16. As can be seen, the most

probable value of the composition is again very close to the E _ 0.57 value.

Notable in both sets of measurements is the fact that this most probable value

is observed throughout the shear layer. This can be understood in terms of the
circumferential velocities, in the frame of the large-scale vortical structures, which

can transport a fluid element from one side of the turbulent region to the other before

it has much chance to alter its own internal mean composition. A comparison of the

gas-phase and liquid-phase data suggests that, as expected at the higher Schmidt
numbers in the latter case, this is more the case in the liquid than in the gas phase.

It should be noted. however, that lower resolution in the gas-phase measurements

could account for some of the observed trends.
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Fig. 16 High-speed fluid mixture fraction PDF measurements in a liquid-phase
(matched density), r = U2/UI - 0.38 shear layer at Re = 2.3 x 10'
(Koochesfahani and Dimotakis 1986). Plotted PDF computed from the
run that yielded the post-mixing-transition image in Fig. 11).

These observations are at variance with the results of gradient-transport-based

PDF modeling effcrts (e.g., Pope 1981, Kollann and Janicka 1982). Those models

yield a most probable value of for the mixed fluid that is close to the local value

of the mean mixture fraction profile (mixed and unmixed), i.e., (y).

Important consequences of the asymmetric entrainment ratio, as reflected in

the mixed fluid composition, are to be found in chemically reacting shear layers. In

particular, in the case in which the reactant concentrations are not carried by the

freestreams at the stoichiometric ratio, which side carries the lean reactant can make

an easily discernible difference in the amount of chemical product formed in the

layer. This was illustrated in the licjuid-phase "flip" experiments of Koochesfahani

et al. (1985) in which mixed fluid in the range of compositions 0 < < 0.36

was compared in a complementary run to mixed fluid in a range of compositions

0.64 < < 1, using a pH-sensitive, laser-induced fluorescence technique. See

data, in Fig. 17. The "'chemical product" is found to be many times larger in

the second case, which marks the high values of in the local composition. Note

also that there is no systematic gradient in the labeled mixed fluid concentration

across the shear-layer normalized width 6/x. It should be emphasized that these

experiments, which were designed to illustrate the potential of this effect, were
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conducted in the mixing transition region, where the remnants of the much larger
asymmetries in the initial roll-up have yet to be amortized with entrainment at

the asymptotic values of the entrainment ratio (e.g., Eq. 28). See the pre-mixing-
transition image in Fig. 11 data and Koochesfahani and Dimotakis (1986, Fig. 12
and related discussion). Similar conclusions were drawn by Masutani and Bowman

(1986), from their gas-phase measurements in the mixing transition region, and by
Sandham and Reynolds (1987), from the results of their computational modeling of

the shear layer -At low Reynolds number.

Fig. 17 Mixing transition laser-induced fluorescence "flip" experiment. Left picture:
Fluorescence from mixed fluid compositions in the range 0 < < 0.36.
Right picture: fluorescence from compositions in the range 0.64 < < 1
(from Koochesfahani et al. 1985).

A sufficient distance beyond the mixing transition, the observed asymmetries

are consistent with the asymptotic values of E and the associated "tilt" in the mixed
fluid composition PDF in Fig. 16. See chemically reacting data at higher Reynolds
numbers in Koochesfahani and Dimotakis (1986, Figs. 16 and 17). These and other
mixing issues in subsonic turbulent shear layers will be discussed in the context
of chemically reacting shear layers, which must be relied on for data at the high

Reynolds numbers of interest here.
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4. Chemical reactions: bp/b

In the case in which the entrained fluids are not premixed and can react,
the associated chemical product formation can obviously proceed no faster than
the rate at which the reactants are mixed on a molecular scale by the turbulent
flow. Considering a vertical slice of the turbulent region of streamwise extent dx,
located at some downstream location x, the (expected) mixed fluid fraction 6 m/ 6

within the transverse extent 6 of the turbulent region occupied by molecularly mixed
fluid (in the mean) represents an important upper bound for the expected chemical
product fraction bp/ 6 within the layer at that location. In the case of combustion of
nonpremixed reactants, it also bounds the heat release corresponding to the amount
of chemical product formed.

In the limit of fast chemistry, i.e., at a chemical kinetic rate sufficiently large
so as not to serve as the limiting process in the rate of chemical product formation,
the fraction of molecularly mixed fluid that is converted to chemical product, i.e.,

p/bm, depends on the resulting PDF, i.e., p( ) d , of molecular mixture composi-
tions within the turbulent region. In particular, it depends on the distribution of
mixture fractions of high-speed fluid to low-speed fluid in the molecularly mixed
fluid, relative to the stoichiometric mixture fraction O required for complete con-
sumption of the available (entrained) reactants, as we will discuss later.

If the chemical kinetics are not sufficiently fast by the previous measure, the
chemical product formation will lag behind the rate at which the reactants are
mixed on a molecular scale by the turbulence. As a consequence, bpp/m will be
smaller, depending also on the ratio (Damk6hler number)

Da = T , (35)
Tch

of the expected time Tm required for mixing, to the time rch required to complete
the ensuing chemical reactions. What is also important from a diagnostics vantage
point is the recognition that, for chemical/flow systems that can be regarded as
kinetically fast, i.e., in the limit of Da --+ oo, measurements of the chemical product
volume fraction 6 p/ 6 can be combined to provide us with reliable estimates of
molecular mixing and the mixed fluid fraction bm/6, as well as the distribution of
compositions of the molecularly mixed fluid, as we will also discuss later. This often
obviates the need for direct measurements of these quantities, which would, for the
most part, have been anyway infeasible at the high Reynolds numbers of interest
here. Direct computations fare no better, as the behavior of fast chemical systems
can result in reaction zones that are even thinner than the expected diffusion scales
(e.g., Eq. 26), under these conditions, and an intractably stiff problem numerically.
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In the context of mixing, we will restrict the discussion that follows to the be-

havior in the limit of fast chemical kinetics (Da --+ oo). Chemical product formation

for finite Damk6hler numbers, however, is important theoretically inasmuch as it

depends not only on the state of the flow at the measurement location but also

on the flow history, which, in turn, prescribes the local molecular mixing (scalar

dissipation) rate. See Bilger (1979, Sec. 2.5) and Williams (1988, Sec. 10.2.4) for a

general discussion. It is also important from an applications vantage point, as the

impetus for ever-increasing flight speeds is forcing us to consider chemical product

formation at higher flow velocities and Mach numbers. In that regime, chemical

product formation may, perforce, ultimately be limited by the fixed available chem-

ical kinetic rates.

Data on the Damk6hler number dependence of the product volume fraction in

a gas-phase, subsonic shear layer were documented by Mungal and Frieler (1988).

An analysis of these data in terms of the Broadwell-Breidenthal-Mungal model we

will discuss later can be found in Broadwell and Mungal (1988). An attempt to

incorporate a more realistic account of a complex chemical system was made by

Dimotakis and Hall (1987), using the bucket zeroth-order mixing model described

earlier (Fig. 14). The reader is directed to those references for an account.

4.1 Dependence on the stoichiometric mixture ratio

Consider the idealized case of the high-speed stream carrying a reactant at a

concentration (mole fraction) X 01 , and the low-speed stream carrying a reactant

at a concentration X 02 , which can react infinitely fast to form a chemical product,

associated with an enthalpy release At. An important quantity, in this context, is

the stoichiometric mixture ratio 0, defined as the volume (number of moles) of high

speed fluid that carries sufficient reactants to consume a unit volume (mole) of low

speed fluid, i.e.,
= Xo2/Xo),(6X02XO (36)
(Xo21XoI)-t'

where the subscript "st" in the denominator denotes a stoichiometric mixture. For

example, a (free-stream) stoichiometric mixture ratio of 0 = 4 implies that a mixture

of four parts of high-speed fluid per part of low-speed fluid is required for complete

consumption of all reactants. Accordingly, complete consumption of all reactants

will occur at a stoichiometric (high speed fluid) mixture mole fraction

4 (37)- €+1
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We can see that a mixture fraction of < CO, for example, will be lean in high-

speed stream reactants and result in unreacted low-speed stream reactants. Similar
definitions can also be employed on a mass basis (e.g., Kuo 1986, Sec. 1.8).

Consider, for example, the chemical reaction between hydrogen and fluorine
which, in the limit of fast chemistry, we can simplify as a one-step reaction (see
Mungal and Dimotakis 1984 for details)

H 2 + F 2 - 2HF , A = -130 kcal/mole , (38)

and which was used in many of the experiments that will be cited below. A mixture

of 1% H2 in 99% N2 and an equal volume of 1% F 2 in 99% N2 is stoichiometric and
will result in an adiabatic (flame) temperature rise owing to the heat released of

ATf = 93 K. A shear layer with a high-speed stream fluid composed of 4% H2 +

96% N2, and a low-speed stream fluid of 1% F 2 + 99% N2 would be characterized
by 0 = 1/4, i.e., 1/4 parts of high-speed fluid must be mixed per part of low-speed

fluid for complete reaction.

For equal heat and species diffusivities, i.e., for Lewis numbers Le =/V =

Sc/Pr = 1, the adiabatic flame temperature rise ATf(-0) is the highest temperature
rise that can be observed in the flow and serves as a convenient normalization of
the observed mean temperature rise zT(y, 4) in the reaction zone. Note that in
a mixture in which X0 1 is kept constant and the stoichiometric mixture ratio 0
is changed by varying X 02 (Eq. 36), keeping the heat capacities constant in the

process, the dependence of the adiabatic flame temperature rise on 0 is given by

24'
AT(¢) = -- ATf(1) = 2CAT(1) (39)

(recall Eq. 37).

Experimental data for the normalized mean temperature rise, for matched

freestream density (s = 1), a freestream velocity ratio of r ; 0.4, gas-phase re-

acting shear layers at low heat release, are plotted in Fig. 18 for 0 = 1/8, 1, and

8. The plotted quantity reflects the local mean fraction of the total chemical prod-
uct (heat release) possible under the circumstances. There is a shift towards the

lean side of the location of the peak mean temperature rise. There is also a marked

asymmetry in the total amount of product (heat release) between the low-0 and the
high-0 runs, which, in view of the relation between the entrainment ratio E and the

(required) stoichiometric mixture ratio 0, is clear in this context. In particular, for
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-0 < E, for example, fluid homogenized at the entrainment ratio will be low-speed
stream reactant lean (O < E) and result in unconsumed high-speed stream reac-
tants. The maximum amount of product is expected at 4 Z E,,, with more product

for > 1 than for ' < 1, for E7 , > 1 (recall that E, ; 1.3 under these conditions).

Note also that, consistent with our observation that a substantial fraction of fluid is
unmixed within the shear layer, the mean temperature rise is everywhere less than

0.65 AT.
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Fig. 18 Gas-phase shear layer: Normalized chemical product at low heat release.
Solid line: € = 1; dashed line: 0 = 8; dotted line: o = 1/8 (Mungal and
Dimotakis 1984; s = 1, r ;z: 0.4). Note the peak temperature rise tilt
towards the lean side for € 54 1 and the larger total chemical product for
6 > 1 relative to 46 < 1, corresponding to an entrainment ratio of E,, > 1.

It is interesting to compare these results to the corresponding data from a
liquid-phase (s = 1), chemically reacting shear layer, at the same freestream speed
ratio (r -- 0.4). These are depicted in Fig. 19, for 0 = I/i0 and 0 = 10. Note the
reduced amount of product relative to the gas-phase results, the asymmetry between
the high-6 and low-€ runs (E,, ;- 1.3 here also), but note that the tilt towards the
lean side is no longer there. W-e can trace these differences to Sch-midt number
effects on the basis of our preceding discussions. In particular. the reduction in the
total chemical product is attributable to the reduction in the amount of molecularly
mixed fluid at the higher Schmidt number (lower species diffusivity). The absence
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of a tilt of the peak mean temperature toward the lean side is the result of the
delayed (slower) molecular mixing, which allows a longer Langrangian time for
homogenization to occur at the larger-than-diffusion scales across the whole shear-
layer transverse extent, owing to the large-structure motion (recall discussion of
data in Fig. 16). See also discussion in Broadwell and Mungal (1988).
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Fig. 19 Liquid-phase shear layer: Normalized chemical product at low heat release,
for 0 = 1/10, 10 (Koochesfahani and Dimotakis 1986; s = 1, r ; 0.4). Note
symmetric chemical product distribution for both > 1 and 0 < 1. in
the figure denotes CO (Eq. 37).

4.2 Relation to the PDF. Schmidt number effects

These results would all be derivable from the local PDF p(C, y) of the mixture
fraction at the measuring station at z, if that were available. In particular, the

product (or heat release) that can be produced corresponding to a particular value

of the mixture fraction is easily computed by assuming complete consumption

of the lean reactant. This yields two straight lines in C, joined at CO, where the
normalized product is equal to unity, i.e.,

, for t0 t <1

1 t
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Fig. 20 Normalized chemical product function 0( ; ) for = 1/8, and € 8 (solid
lines), and € = 1 (dashed line). PDF (dotted line) is sketched for reference,
corresponding to E, , 1.3 (cf. Fig. 18).

(see, for example, Kuo 1986, Sec. 1.9). This dependence is depicted in Fig. 20 for

= 8, 1, and 8.

The average chemical product volume (mole) fraction 'p/ 6 can be computed
as the integral of the normalized product profile in the interior of the shear layer,

_ 1_, AT(y,4) dy , (41a)

or as an integral over the PDF of mixture fractions, since

AT(y, ) I(41b)
AT(0) - 0

where 8( ; C) is the triangular normalized product function (Eq. 40). Experimental

values of this quantity are included in Fig. 21 for a gas-phase reacting shear layer
at Re = 6.4 x 10 (Mungal and Dimotakis 1984), as a function of the stoichiometric

mixture fraction C. Also included in that figure is a point at 40 = 10 (Koochesfahani
and Dimotakis 1986, 4 = 0.91) for a liquid-phase shcar layer at a comparable

Reynolds number (Re = 7.8 x 104 ).
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Fig. 21 Chemical product volume fraction bp/5 vs. C for r Z 0.4 and matched
freestream densities. Circles: gas-phase data (Mungal and Dimotalkis 1984)
Re = 6.4 x 104. Triangle: liquid-phase data (Koochesfahani and Dimotakis
1986) Re = 7.8 x 10'. Smooth curve drawn to aid the eye.

The triangular normalized product function 6(C; CO) suggests the use of chem-
ically reacting experiments to estimate some statistics of the mixed fluid PDF. In
particular, for o -- 0 and - 1, the ratio of the corresponding product volume

fractions can be used to estimate the average composition m in the mixed fluid.
For a small C = Co -- 0, we find

6p( o) + (42)

Using the experimentally determined liquid-phase values of

6(e) {0.125, at C# = Co = 0.09;
b 0.165, at Co = I - Co = 0.91 ,

we then estimate a value of m z 0.57 (Koochesfahani and Dimotakis 1986). This
agrees with the value of CE = E/(E + 1), calculated using the independently es-

timated value of the volume flux entrainment ratio E - S 112 (1 + t/X) _ 1.3 (cf.
Eqs. 28, 29, 13).
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This idea was also used to estimate the dependence of the mean mixed fluid
composition in a recent set of experiments (Frieler and Dimotakis 1988) in subsonic,
low-heat-release, gas-phase shear layers with unequal freestream densities (s # 1),
for which the expected asymmetries in the entrainment ratio can be large (Eqs. 13
and 28). The resulting data are plotted in Fig. 22 for freestream density ratios in
the range of 0.1 < s < 4, and compared to the estimated value of E, using the
subsonic expression for the volume flux entrainment ratio discussed in the previous

paragraph.
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0 1.0 2.0 3.0 4.0
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Fig. 22 Experimentally estimated mixed-fluid mixture fraction (m as a function of
the density ratio (Frieler and Dimotakis 1988). Dashed line depicts the
estimated dependence of E on the density ratio.

Comparing the triangular product functions for small and large 0, we also
note that, except for omitting the endpoints, they are essentially complements of
each other. Consequently, for the case of negligible heat release, we find

6m (1- 0 )[ p(0) + 6p(1 0)]

This represents the mixed fluid fraction, if the edge contributions from the regions
0 < < f and 1 - E < < 1 are excluded from the mixed fluid tally. In this
approximation, e ; Co/2, corresponding to the gas-phase chemical reaction product
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function, and e o for the liquid-phase data. Using the values for the liquid-phase
chemically reacting layer (Eq. 43), with e = 0.09, we then estimate (s = 1)

L b 0.26 .
(44a)

A similar calculation was also made using the results of the low-heat-release gas-
phase data vs. freestream density ratio of Frieler and Dimotakis. Small dilatation
corrections were applied to those data, which are of first order for this quantity.
The results are plotted in Fig. 23 as a function of the freestream density ratio. It
is significant that the mixed fluid fraction is found to be essentially independent of
the density ratio, even as the mixed fluid composition depends rather strongly on it.
The mixed fluid fraction derived from these data for matched freestream densities
is then found to be (note that e ; 0/ 2 ; 0.05)

( ) - 0.49 (44b)
(L)gas

The estimates in Eqs. 44a and 44b were the values quoted in Eq. 27 for this quantity.
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Fig. 23 Mixed fluid fraction bm/5 as a function of the freestrearn density ratio s =
P2/PI. Gas-phase data from Frieler and Dimotakis (1988).
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4.3 Reynolds number effects

The existing experimental evidence suggests that chemical product formation

and the resulting chemical product mole fraction 6p/6 observed at a station x is a

(weak) function of the local Reynolds number, at least for gas-phase flows. Available

gas-phase and liquid-phase data, for a range of stoichiometric mixture ratio 0, heat

release (indicated by the adiabatic flame temperature rise ATf), and Mach number

are plotted in Fig. 24 vs. logl 0(Re).

.3

0.

40

.1

o0 I I I I

4.0 4.5 5.0 5.. 6.0 6.5

logj 0 (Re)

Fig. 24 Reynolds number dependence of chemical product mole fraction 6 p/b. Sub-
sonic gas-phase data: Circles (laminar boundary layer) and squares (tur-
bulent boundary layer) from low-heat-release data of Mungal et al. (1985,
4 = 1/8, AT! - 190 K). Stars from the higher heat release data of Her-

manson and Dimotakis (1989, 0 = 1, ATf ,,t 370 K). Supersonic shear-
layer data (Hall et al. 1991b): Cross for Ml = 1.5N 2 , MAI2 = 0.3N 2,
0 = 1/4, ATf ; 300K. Diamond for M1 = 1.5He, M! 2 = 0.3 Ar, 4 = 1/3,

ATf 580 K. Liquid-phase data: Triangles from Koochesfahani and Dimo-
takis (1986, 4 = 10).

Although these data span a range of flow and chemical reaction parameters, one

can discern by comparing results from a given set of conditions that for the gas-phase

data, the product fraction 6p/6 is found to decrease slowly with increasing Reynolds

number. Liquid-phase data exhibit an even weaker Reynolds number dependence,
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if any, even though the lower Reynolds number value of Re ,z 2.3 x 104 in those data
may not be sufficiently above the mixing transition to be used for the comparison.
The highest Reynolds number data included in the plot are derived from the recent
measurements by Hall et al. (1991b) in supersonic shear layers. While it would
appear that those values are consistent with the general trend, it is difficult to
say, at this time, if the reason for the lower values of bp/b is attributable to the
higher Reynolds numbers, or to compressibility. Further experiments, directed at
separating these two important effects, are required.

It should be noted that the shear layer thickness 6, at the measuring station
x, was also changing with Reynolds number in these experiments. Although this
variation was normalized out by taking the ratio of the product thickness 6 p and the
shear laytr (1%) thickness 61% ;zz b& to compute the chemical product mole fraction,
we should appreciate that the change in the shear-layer thickness was sometimes
larger than the change in the estimated product volume fraction documented in
Fig. 24 (recall Figs. 2 and 3 and related discussion).

A proposal for an explanation of Reynolds number and Schmidt number effects
was first made by Broadwell and Breidenthal (1982). The suggestion in that model
was that the mixed fluid PDF can be modeled as a superposition of the PH(O) PDF

corresponding to the homogeneously mixed fluid in the bucket cartoon and the
contribution from thin interfacial diffusion layers interspersed in the shear layer,
and which separate pure = 0 and = 1 fluid. Some revisions and clarifications
were made in the more recent discussion of this model by Broadwell and Mungal
(1988). The Broadwell-Breidenthal-Mungal (BBM) model then yields for the mixed

fluid PDF, i.e., for # 0 and # 1,

p()d CH6D( -- E) + CF PF( ) d, (45)

where 6 D() denotes the Dirac delta function and PF( ) is the PDF of composition
as would arise in a laminar strained interface ("flame sheet") between = 0 and

= 1 interdiffusing fluids. The dependence on the Reynolds number and Schmidt
number in this superposition arises from modeling the amount of mixed fluid taken
as residing in the diffusive interfaces. The coefficients CH and CF are assumed to be
constants of the flow and, in particular, independent of the Schmidt and Reynolds

numbers.

The proposed dependence on Schmidt number and Reynolds number in the
BBM model is equivalent to the assumption that the interfacial diffusion-layer thick-
nesses can be modeled by scaling the relevant strain rate a using the local outer
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flow variables, i.e., a oc AU/6 (see Eq. 26), and that the associated diffusion inter-
face surface-to-volume ratio is independent of the Reynolds number. These authors
suggest that the model should apply for Re > 1, vrcRe > 1, and v/% > in Sc,
even though the latter inequality would automatically be satisfied at the Reynolds

numbers of interest here (Broadwell and Mungal 1988).

Integrating the proposed model PDF over C, excluding the contributions of the

unmixed fluid at = 0 and " 1, we then obtain, for the BBM model estimate of
the mixed fluid fraction,

6m CF
-- Z CH + C (46)

A similar result is obtained for the product fraction 6p( O)/b, in which the de-
pendence of the homogeneous mixture contribution on O is given by (see Eq. 40)
8O(E; CO), and the dependence of the flame sheet contribution is given by (see Broad-
well and Mungal 1988)

2

)= .(1_) , (47a)

where the quantity z, is implicitly defined by the equation

erfzo = 2( ) . (47b)

The constants CH and CF in the BBM model are to be determined by fitting the
data, e.g., the Schmidt number dependence of 6m/6 (Eq. 46). The proposed model
PDF is depicted in Fig. 25, with the Dirac delta function contribution represented

by a narrow Gaussian of the appropriate area, centered on a C = CE corresponding
to an entrainment ratio of E = 1.3.

In the BBM estimates for 6m/6 and 6p/b, the "flame sheet" contribution van-

ishes at large Schmidt numbers (cf. Eq. 46). The gas/liquid difference is then
accounted for by noting that the mixed fluid, in that case, is solely composed of
the homogeneously mixed fluid at the composition ; CE. Similarly, the gas-phase
expressions asymptote to the liquid value at high Reynolds numbers. Conversely,

the BBM model predicts that there should be no Schmidt number dependence at

high Reynolds numbers. For gas phase flow, the predicted BBM dependence on

Reynolds number is stronger (Re - 1/2) than the logarithmic dependence suggested
by the data (Fig. 24) but nicely simulates the much weaker Reynolds number de-

pendence of the liquid phase data. Finally, we should note that, according to the
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Fig. 25 Broadwell-Breidenthal-Mungal model PDF. See Broadwell and Breidenthal
(1982).

BBM model, the mixed fluid and chemical product volume fraction does not depend
on the fluid kinematic viscosity, being a function of the Peclet number,

Pe = 14= ScxRe
V

in which only the species diffusivity V enters. See Broadwell and Mungal (1988)

for more details.

It is interesting that similar conclusions have also been arrived at by Kerstein

(1988, 1989), using a phenomenological Monte Carlo model to represent the me-
chanics of turbulent transport and mixing. In his numerical simulations, Kerstein

arrives at results for the mixed fluid and chemical product formed in a shear layer
that are in accord with the BBM result expressed in the form of Eq. 46.

It could be argued that the strain rate at the interfacial surface formed by
the turbulent flow between the entrained pure fluids from each of the freestreams

should be estimated as a function of the distribution of spatial scales associated
with that interface. In particular, one could argue that the predominant fraction

of the surface-to-volume ratio S would be associated with the smallest scales in the

flow which, for Sc 1, would be in the vicinity of the Kolmogorov (1941) scale

- (41/4

AK =_ ) I (48a)
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where e oc (AU)3 /6 is the expected local kinetic energy dissipation rate per unit

mass. This yields

1 1 Re3/ 4  (49)
AK 6

in the limit of large Reynolds numbers. The expected strain rate at those spatial
scales would be proportional to the reciprocal of the Kolmogorov time ti = r/

or, in terms of the outer variables of the flow,
AU

UK Ox - Re'l/2  (48b)

For Sc ; 1, an estimate of the mixed fluid fraction scaling might be obtained as
the product of the expected diffusion thickness AV -. v/ 7 (Eq. 26), at the small

scales, and the surface-to-volume ratio S of Eq. 49. It is interesting that this simple
tally yields a Reynolds-number-independent estimate, to leading behavior, for the
mixed fluid fraction (see also discussion in Dimotakis 1987, Sec. 3.3).

As a rebuttal to this argument, we recognize that the interfacial surface will be
characterized by the full spectrum of turbulent scales and the associated distribution
of strain rates. Accordingly, one might attempt a tally in which this distribution is
accounted for, with closure requiring the assignment of a statistical weight to each
scale A within the bounds of the turbulent flow. Such a model has been attempted
(Dimotakis 1987), where it was argued that the statistical weight w(A) dA of a scale
A in the self-similar inertial range must be given by

w(A)dA oc dA (50)

A

as the only scale-invariant group that can be formed, and that the flow behavior
below the Kolmogorov scale cannot alter this distribution in the range AB < A < AK,

where AB = AK/v' is the scalar species Batchelor (1959) diffusion scale. This is
equivalent to assuming that all scales are equally probable and that the statistical
weight of a scale A is therefore given by the surface-to-volume ratio of that scale,

i.e., S(A) oc 1/A, with the constant of proportionality determined by normalization
This lea. to an estimate for the mixed fluid fraction of

bm Bi (Sc) (51)
" 3 (1_

6 Bo(Sc) + (i-8 )n(Re/Rer)

where the functions Bo(Sc) and Bi(Sc) are determined by the calculation, P ; 0.3 is

the dissipation rate fluctuation coefficient, (Kolmogorov 1962, Oboukhov 1962), also

known as the intermittency exponent (e.g., Monin and Yaglom 1975) and Recr ,. 26
(see Dimotakis 1987 for details).
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The model predictions are in accord with the observed dependence of the chemi-

cal product on the stoichiometry of the free streams, as well as the Schmidt number

and Reynolds number dependence of the chemical product and mixed fluid frac-

tions. It also predicts an ever-decreasing chemical product and mixed fluid fraction
with increasing Schmidt number (decreasing species diffusivity). As can be seen in

the resulting expression for 6m/6, however, it predicts that the mixed fluid volume

fraction is also an ever-decreasing (albeit slowly) function of the Reynolds number.
This is a rather robust consequence of the w(A)dA statistical weight distribution

that was assumed (Eq. 50). On the other hand, even a small departure from this

distribution would alter this behavior in the limit, with no discernible differences
within the range of Reynolds numbers that have been investigated and are typically

achievable in the laboratory.

It need not be emphasized that the dependence and limiting behavior of turbu-

lent mixing processes on Reynolds number is of considerable significance not only
theoretically but also from an applications vantage point.
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5. Discussion and conclusions

For all the progress that has been made in addressing problems of mixing and
combustion in turbulent shear flows, it is clear that important issues remain to be
resolved. Many of these arise from the complexity and constraints imposed on these
flows for a diverse set of reasons, which fundamental research often has the luxury
of ignoring. Just as significant, however, are the problems that can be considered

important and fundamental from any perspective, whose resolution would not only
advance our understanding of turbulence, mixing, and combustion but would also

have a direct impact on technology and applications. As Boltzmann used to say:
"There is nothing more practical than a good theory."

Of the many problems that emerge from the preceding discussion, there are
three, in my opinion, that merit close future scrutiny. These are: the apparent
dependence of the far field behavior of high Reynolds number flows on initial con-

ditions, the limiting behavior of high Reynolds number turbulence as the Reynolds

number is increased to very large values, and the nature of turbulence under com-
pressible flow conditions. The discussion that follows on these is necessarily more in
the nature of speculation. In deference to Sir Arthur's admonition: "It is dangerous

to theorize without data."

To paraphrase one of the conclusions of the dicussion on shear-layer growth,

it is surprising that the initial conditions seem to determine what appears to be the
asymptotic behavior of the turbulent shear layer. Should that interpretation survive
future scrutiny, it must be considered a remarkable manifestation of what the equa-

tions of motion are clearly capable of admitting in principle. Nevertheless, it flies in
the face of traditional assumptions about the behavior of turbulence in the limit of

high Reynolds numbers. Additionally, unless an explanation and an accounting can
be formulated for this behavior, it also complicates the analysis, simulation, and

modeling of these flows in that this behavior will appear as a nonunique response
to seemingly similar flow conditions. To the extent that we cannot mix any faster
than the shear layer grows, the stakes, both theoretically and from an applications
standpoint, are not small, as measured by the range of empirical values of the shear

layer growth coefficient Cb of almost a factor of 2 (recall Eqs. 10, 11).

Turning the coin over, we can see the potential for substantial benefits from

flow control: if we can get, or ... lose, a factor of 2 by doing hardly anything,
think what we can do if we try! Some recent results in our laboratory in what has

previously been regarded as canonical turbulent jet mixing also substantiate this
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conclusion (see Miller 1991, Ch. 6) and suggest that this behavior is not peculiar to

shear layers. There is a growing body of evidence that the possibilities that arise
with active flow control are very significant, as can be seen from the work cited on
the response of shear layers to external forcing (footnote, Sec. 2.1), the flow control
in jets (Parekh and Reynolds 1989), the flow control and resulting mixing control in
the wake of a circular cylinder (Tokumaru and Dimotakis 1991), and many others
that have not been included here.

Returning to shear layers, it is important to understand the mechanism by
which the initial conditions are felt by the flow thousands of momentum thicknesses

downstream of the splitter plate trailing edge and how this observation is reconcil-
able with classical theories and descriptions of turbulence. It will be interesting to

examine this issue and the clues that may be offered by the various research efforts
in supersonic shear layers in progress. As the flow changes from elliptic to hyper-

bolic, the communication channels between different portions of the flow bcome a
function of the Mach number of the two streams, as well as the respective convective

Mach numbers that result.

In considering Reynolds number effects, it may be useful to think about a

gedanken experiment in which the Reynolds number is varied by controlling the
test section or combustor pressure at fixed geometry and freestream speeds. This
would control the Reynolds number (at fixed Schmidt number) through a change in

the molecular diffusivity coefficients, leaving most other flow parameters unaltered.
Such a scheme would still change the Reynolds number of the initial conditions (re-

call Figs. 2 and 3, related caveats, and previous discussion), as well as the expected
number of large-scale structures between the splitter-plate trailing edge and a fixed
measuring station (Dimotakis and Brown 1976). Nevertheless, it would leave the

scaling with respect to the local outer flow variables unaltered and make it easier to
argue for (or even discern, should such experiments be undertaken in the future) the

subtle dependence of turbulence and mixing on the fluid Reynolds number, at fixed

Schmidt number. If the dynamic range of Reynolds numbers in such experiments
is large enough, one might obtain important clues about the behavior of turbulence
as the Reynolds number is increased without limit. This is all the more important

because the experimental evidence suggests that the mixed fluid fraction in shear

layers is decreasing with increasing Reynolds number, in a Reynolds number regime
untouchable by the foreseeable computing community, most models silent on the

issue, and disagreement between two models that have stuck their necks out at this

writing!
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To complicate matters further, we should mention that recent experimental
investigations of turbulent mixing in turbulent jets in our laboratory, in both gas-
phase and liquid-phase flows, suggest that the dependence of turbulent jet mixing

on Reynolds number has the opposite sign. Specifically, we have found that, for gas-

phase flows, turbulent jet diffusion flame length decreases with Reynolds number,
up to a jet Reynolds number of Re : 2.5 x 10', indicating better mixing in the far
field with increasing Reynolds number for turbulent jets. The near field behavior is

more complicated, as evidenced by the Reynolds number dependence of the virtual

origin of the jet flame length with respect to stoichiometric mixture ratio (Gilbrech

1991). Measurements in liquid-phase jets have shown similar trends, as manifested

by a decreasing variance of the jet fluid concentration fluctuations in the far field

of the jet with increasing Reynolds number, with no Reynolds-number-independent
mixing regime, beyond snme minimum Reynolds number, at least within the range
of Reynolds numbers attained in the experiments (Miller and Dimotakis 1991, Miller

1991). These results are very significant, in light of the opposite behavior found for
shear layers, because they suggest that the dependence of turbulent mixing processes

on Reynolds number is not universal. This behavior can probably be traced to
differences in the behavior at the largest flow scales and the interplay between the

large-scale organized structures, that are manifestly peculiar to each flow geometry,
and the behavior at the smallest small scales, where the actual molecular mixing

largely takes place. It goes without saying that this behavior must also be captured

by turbulent mixing models, if they are to account for the observed phenomena.

Even in the unlikely event that compressible turbulence proves to be an even
better mixer than its incompressible counterpart, it seems clear that we should ex-

pect to find a reduced overall mixing rate at high Mach numbers relative to incom-

pressible flow. If the growth rate, absent external disturbances and mixing devices,

is diminished by a factor of five, or so, there is little the turbulent interior can do

to offset this reduction. In fact, the scant experimental evidence presently available

from chemically reacting experiments in supersonic shear layers (see Fig. 24) would
indicate that one should probably not expect any spectacular surprises on this score

from canonical shear-layer flow configurations.

A second potentially important difference in behavior can be gleaned from the
discussion of the entrainment ratio and the behavior of the large scale structure
convection velocity under supersonic conditions. In particular, in a flow regime
where the evidence and simple arguments suggest that shocks may be borne by one

free stream or another, but not both, we expect much larger potential asymmetries

in the entrainment ratio than in incompressible flow. To make matters worse, it
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is possible that it may prove difficult to predict or control in which direction the
asymmetry may be realized. This is of considerable significance in the context of
the expected composition of the mixed fluid, to the extent that one may not be able
to predict and design for even the stoichiometry at which the combustion may have
to be asked to take place within a shear layer zone. Moreover, it is a behavior that
may well exhibit large changes in response with small changes in Mach number.

As for the mixing process itself, we can only speculate about it, at present. Our
views of compressible turbulence are limited and not well substantiated. Some of
the mainstays of incompressible turbulence, like the Kolmogorov similarity theories,
may have to be revised if not abandoned as supersonic convective Mach numbers
admit shocks running through the flow. There is evidence that in cases in which
the driving field can generate eddies at intermediate scales, these similarity ideas
cease to apply. In the case of shocks running through a turbulent flow character-
ized by density inhomogeneities, baroclinic generation of vorticity will form such
eddies (e.g., Haas and Sturtevant 1987, Brouillette 1989, Waitz 1991, Yang 1991),
which will both influence and be influenced by subsequent shocks that visit (e.g.,

Hesselink and Sturtevant 1988, Rotman 1991). Secondly, in an environment that is
characterized by limits in the speed, on the one hand, and couples density fluctu-
ations particularly efficiently to acoustically radiated power, as the Mach number
increases, fluctuations and mixing may become dear commodities. On the other
hand, this behavior could depend rather strongly on whether this is confined or
open flow, as noted in our discussion on stability analysis (Tam and Morris 1980,
Tam and Hu 1988, Sec. 2.2) and by H. Hornung in private discussions, with the
sign of the outcome possibly dependent on the details!

It may be worth concluding by stating what is perhaps obvious, namely, that,
from an applications point of view, enhancement of shear-layer growth and mixing
is not always the objective. Although it may be, if one is interested in combustion
efficiency and propulsion, it certainly is not the objective in the case of film cooling
of hypersonic propulsion devices, aerodynamic windows for high-power chemical
lasers, etc. What is at a premium here is the mastering of the fundamental physics of
these phenomena, which will permit the optimization and control of their behavior,
in each case, for the specific, complex, and sometimes purposes unanticipated at
the outset.
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